

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level In Further Pure Mathematics F2 (WFM02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2024 Question Paper Log Number P73487A Publications Code WFM02_01_2401_MS All the material in this publication is copyright © Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and completing an attempt to apply it', unless otherwise indicated.
- **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- ft follow through
- cao correct answer only
- cso correct solution only. There must be no clear errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent
- dM dependent method mark
- dp decimal places
- sf significant figures
- ***** The answer is given on the paper apply cso

- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out provided it is not cursory.
 - If either all attempts are crossed out or none are crossed out, score for their best attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer unless the mark scheme indicates otherwise.
- 8. Mark question parts separately unless the scheme indicates otherwise.

<u>Usual rules for the method mark for solving a 3 term quadratic:</u> (Note: There may be schemes where the below does not apply)

If no method is shown then one root must be obtained that is consistent with their equation.

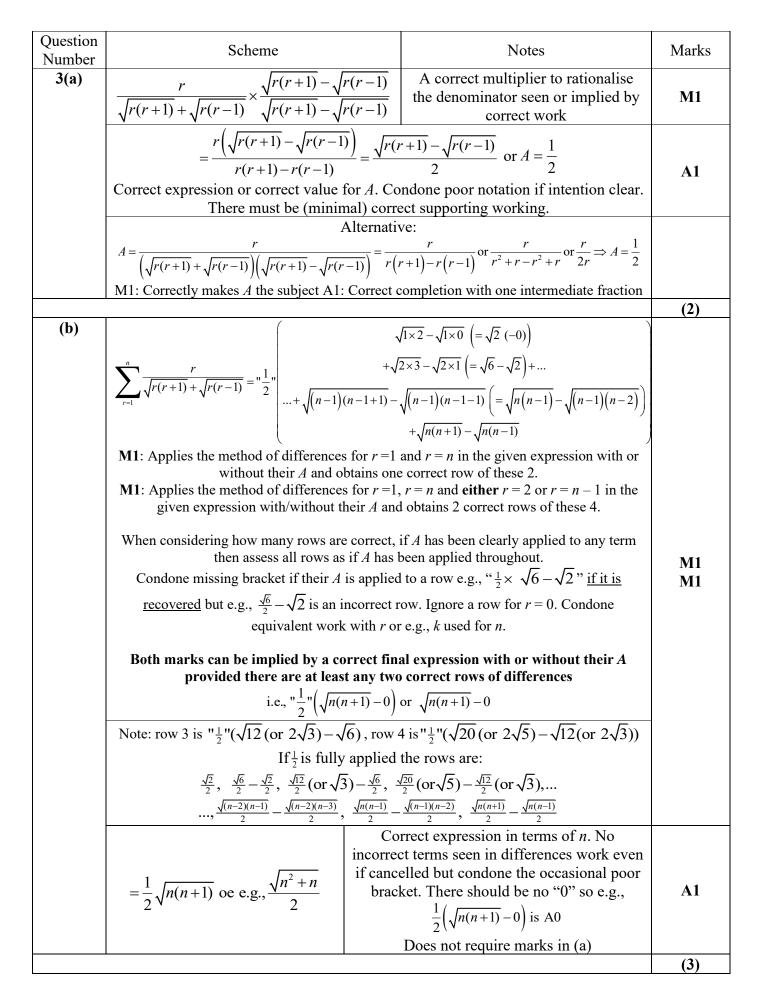
1. Factorisation

$$(x^{2}+bx+c) = (x+p)(x+q)$$
, where $|pq| = |c|$, leading to $x = ...$
 $(ax^{2}+bx+c) = (mx+p)(nx+q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Complete attempt to use the correct formula with values for a, b and c leading to x = ... (may be unsimplified).

3. Completing the square (where a = 1, otherwise must divide by a first – allow equivalent work if a is a square number)


Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

January 2024 WFM02 Further Pure Mathematics F2 Mark Scheme

Question Number	Schem	ie	Notes	Marks
1		$\frac{1}{x+2} > 2x+3$		
		$\frac{x+2}{\text{Examples:}}$		
	1			
	$\frac{1 - (x+2)(2x+3)}{x+2} > 0 \Longrightarrow 2x^2 + 7x + 5 = 0$			
	$x+2 > (2x+3)(x+2)^2$			
	$\Rightarrow (x+2)(2x^{2}+7x+5) = 0 \text{ or } 2x^{3}+11x^{2}+19x+10=0$			
	$\frac{1}{x+2} = 2x - \frac{1}{2}$	$+3 \Rightarrow (2x+3)(x+2)-1$	$x = 2x^2 + 7x + 5 = 0$	M1
	condone incorrect inequa	lity signs but the first al	y a 3TQ or a 4TC. Allow slips and gebraic step should be otherwise (x+2)=0. The "= 0" can be	
	algebraically. Squarin	1 1 1	aire intersections to be found llow M1 for obtaining a 5TQ +35=0)	
	e.g., $(2x+5)(x+1)=0 \Rightarrow$		m appropriate work and no extra	
	$x = -\frac{5}{2}, -1$	incorrect cvs. May	only be seen in the solution set. g a 3TQ etc. by calculator.	A1
	x = -2	solution set. This is the algebraic manipulat	tical value. May only be seen in e only mark available if there is no tion seen. Allow from any or no from $(2x+3)(x+2)=0$	B1
	$\Rightarrow x < -\frac{5}{2}, -2 < x < -1 \text{ or e.g.}, (-\infty, -2.5), (-2, -1)$			
	M1: For the regions $x < a$, $-2 < x < b$ with real cvs $a < -2$ and $b > -2$ but condone $b < x < -2$ as a notational slip for this mark.			
	Condone any non-stric dependent but m A1: Correct solution se subsequently incorrectly a	t inequality signs and po ust follow an attempt at t in any form. Do not isy amended. Allow all mar n was seen earlier in the	oor notation for this mark. Not algebraic manipulation. w if the correct inequalities are ks even if an incorrect inequality	M1 A1
	5	Examples:	e	
	$-\frac{5}{2} > x \text{ or } -2 < x <$	-1 M1 A1 $x < -\frac{1}{2}$	$\frac{5}{2}$ and $-2 < x < -1$ M1 A1	
	(Accept any word between the two correct regions) $x < -\frac{5}{2}, -1 < x < -2$ M1 A0 (notational slip)			
	$\left(-\infty, -\frac{5}{2}\right) \cap \left(-2, -1\right) \text{ M1A0 (incorrect symbol - allow "and")} \left[-\infty, -\frac{5}{2}\right] \cup \left[-2, -1\right] \text{ M1A0}$			
		$-2 < x x < -1 M0 \; A$		
				(5)
				Total 5

Question Number	Scheme	Notes	Marks	
2(a)	(i) $z = 6 - 6\sqrt{3}i \Longrightarrow z = \sqrt{6^2 + (6\sqrt{3})^2} = 12$	+12 only. Accept if just stated	B1	
	(ii) e.g., $\arg z = -\arctan z$	$n\frac{6\sqrt{3}}{6}$		
	Attempts an expression for a relevant angle. Look for $\pm \arctan\left(\pm\frac{6\sqrt{3}}{6}\right)$ or e.g., $\pm \tan^{-1}\left(\pm\frac{1}{\sqrt{3}}\right)$			
	If arctan is not seen allow e.g., $\tan \alpha = \frac{6\sqrt{3}}{6} \Rightarrow \alpha = \frac{\pi}{3}$ with α correct for their $\tan \alpha$			
	If using sin or cos the hypotenuse must be their 12			
	arg z or arg or argument (of z) = $-\frac{\pi}{3}$ * A correct proof with no incorrect work/statements. LHS required. Allow " θ =" if consistent , e.g., $\theta = -\frac{\pi}{3}$ cannot follow "tan $\theta = +\sqrt{3}$ "			
	-			
(ii) Way 2	$z = 12\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 12\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) \text{ or } 12e^{-\frac{\pi}{3}i} \text{ or } \cos\theta = \frac{1}{2} \text{ or } \sin\theta = -\frac{\sqrt{3}}{2}[\text{M1}] \Rightarrow \arg z = -\frac{\pi}{3}[\text{A1}^*]$ M1: Factorises out 12 and writes in trig or exp form or identifies $\cos\theta = \frac{1}{2} \text{ and } \sin\theta = -\frac{\sqrt{3}}{2}$ A1: Acceptable statement with all work correct			
	$z = 12\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) \text{ or } 12e^{-\frac{\pi}{3}i} \text{ or } 12\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 6 - 6\sqrt{3}i \text{ [M1]} \Rightarrow \arg z = -\frac{\pi}{3} \text{ [A1*]}$ M1: Assumes result, writes correctly for their 12 and attempts $a + ib$ form A1: Obtains $6 - 6\sqrt{3}i$ and makes acceptable statement with all work correct			
(ii) Way 3				
	· ~		(3)	
(b)	$z = "12" \left(\cos\left(-\frac{\pi}{3}\right) + i \sin\left(-\frac{\pi}{3}\right) \right) \text{ or } "12" e^{-\frac{\pi}{3}i} \text{ [no missing "i" unless recovered]}$			
	Correct trig or exp. form with their 12. Could be implied by their z^4 in trig or exp. form e.g.,		M1	
	$("12"e^{-\frac{\pi}{3}})^4$ Allow equivalent values of θ e.g. $\frac{5\pi}{3}$ and use of e.g., $\sin\left(-\frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right)$.			
	Condone poor bracketing. Allow this mark if $+2k\pi, -2k\pi, \pm 2k\pi$ appears with argument $z^{4} = 20736 \left(\cos\left(-\frac{4\pi}{3}\right) + i\sin\left(-\frac{4\pi}{3}\right) \right) \text{ or } 20736 \left(\cos\left(-\frac{4\pi}{3}\right) + i\sin\left(-\frac{4\pi}{3}\right) \right) \text{ or } 20736 \left(\cos\left(-\frac{4\pi}{3}\right) + i\sin\left(-\frac{4\pi}{3}\right) \right) $			
	Correct z^4 in any form. 12 ⁴ evaluated and arg. of $-\frac{4\pi}{3}$	(not just $4 \times -\frac{\pi}{3}$) or $\frac{2\pi}{3}$ only although	A1	
	may use e.g., $\sin\left(-\frac{4\pi}{3}\right) = -\sin\left(\frac{4\pi}{3}\right)$. No "k"s. Co			
	Only accept $-10368 + 10368\sqrt{3}i$ or $20736\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right)$	i) provided evidence of de Moivre.		
	Λ	,	(2)	

Question Number	Scheme	Notes	Marks
2(c)	$w = z^{\frac{1}{2}} = (\pm)\sqrt{"12"} \left(\cos\left(\frac{-\frac{\pi}{3}}{2}\right) + i \sin\left(\frac{-\frac{\pi}{3}}{2}\right) \right) \text{ or e.g., } (\pm)"2\sqrt{3}"e^{-\frac{\pi}{6}i}$ [no missing "i" unless recovered] Correct use of de Moivre's theorem with $-\frac{\pi}{3}$ and their 12 to attempt one square root. Allow work with argument of $\frac{5\pi}{3}$ for $-\frac{\pi}{3}$ and use of e.g., $\sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right)$. Condone poor bracketing. M0 if z^4 used for z. Allow this mark if $+2k\pi, -2k\pi, \pm 2k\pi$ appears with argument		M1
	$w = 3 - \sqrt{3}i,$ A1ft: One correct exact root in $a + ib$ or $c(a + ib)$ numerical trig expressions) ft the A1: Both exact roots (no others) correct in a not numerical trig ex $a = (\pm) \sqrt{12} \frac{\sqrt{3}}{2}, (\pm) \frac{\sqrt{3}}{2}$ Accept $\pm (3 - \sqrt{3}i)$ but just $\pm 3 - \sqrt{3}i$ is	$-3 + \sqrt{3}i \text{ oe}$ +ib) form (a, b, c may be unsimplified but not $ir 12 \text{ only } i.e.(\pm)\sqrt{"12"}\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)$ +ib form -a and b may be unsimplified (but pressions) e.g. accept $\frac{5}{2} b = (\mp)\frac{\sqrt{12}}{2}, \ (\mp)\frac{2\sqrt{3}}{2}$ $is \text{ A1 A0. Just } \pm \sqrt{3}\left(\sqrt{3} - i\right) \text{ is A1 A0}$	A1ft A1
Alt	$w^{2} = z \Rightarrow (a + ib)^{2} = a^{2} - b^{2} + 2abi = a^{2} - b^{2} + a^{2} + b^{2} + a^{2} + a^{2} + b^{2} + a^{2} +$		(3) Total 8

Question Number	Scheme	Notes	Marks
3(c)	$\sum r = \frac{1}{2}n(n+1) \text{ e.g., sight of } k \times = \sqrt{\frac{1}{2}n(n+1)}$	States or uses the correct summation formula for integers	M1
	$\frac{k}{2}\sqrt{n(n+1)} = \sqrt{\frac{1}{2}n(n+1)} \Longrightarrow \frac{k}{2} = \sqrt{\frac{1}{2}} \Longrightarrow k = \sqrt{2}$	$\sqrt{2}$ only (Not \pm). $k = \sqrt{2}$ must not come from a clearly incorrect equation.	A1
			(2)
			Total 7

Question Number	Scheme		Notes	Marks
4(a)	$y = \tan\left(\frac{3x}{2}\right) \Rightarrow y' = \frac{3}{2}\sec^2\left(\frac{3x}{2}\right)$		Any correct first derivative. Not implied by $y'(\frac{\pi}{6}) = 3$	B1
	$\Rightarrow y'' = 2 \times \frac{3}{2} \sec\left(\frac{3x}{2}\right) \times \sec\left(\frac{3x}{2}\right) \tan\left(\frac{3x}{2}\right) \times \frac{3}{2}$ $= \frac{9}{2} \sec^{2}\left(\frac{3x}{2}\right) \tan\left(\frac{3x}{2}\right)$	k se	pts the second derivative achieving $ec^2\left(\frac{3x}{2}\right)tan\left(\frac{3x}{2}\right)$ or unsimplified valent. Not implied by $y''\left(\frac{\pi}{6}\right) = 9$	M1
	$\Rightarrow y''' = \frac{9}{2} \sec^2\left(\frac{3x}{2}\right) \sec^2\left(\frac{3x}{2}\right) \times \frac{3}{2} + \frac{9}{2} \tan\left(\frac{3x}{2}\right) \times 2 \times \frac{3}{2} \sec^2\left(\frac{3x}{2}\right)$ $\left = \frac{27}{4} \sec^4\left(\frac{3x}{2}\right) + \frac{27}{2} \sec^2\left(\frac{3x}{2}\right) \tan^2\left(\frac{3x}{2}\right)$		dM1: Attempts third derivative using the product rule, achieving $P \sec^4\left(\frac{3x}{2}\right) + Q \sec^2\left(\frac{3x}{2}\right) \tan^2\left(\frac{3x}{2}\right)$ or unsimplified equivalent. Requires previous M mark. A1: Correct differentiation. Accept unsimplified. Not implied by $y'''(\frac{\pi}{6}) = 54$	dM1 A1
	If $\sec^2\left(\frac{3x}{2}\right) = \tan^2\left(\frac{3x}{2}\right) + 1$ is used the identity expressions of consistent Note that replacing $\sec^2\left(\frac{3x}{2}\right)$ in $y'' \Rightarrow y'$	t form sh	ould be achieved.	
	$y\left(\frac{\pi}{6}\right) = 1, y'\left(\frac{\pi}{6}\right) = 3, y''\left(\frac{\pi}{6}\right) = 9, y'''\left(\frac{\pi}{6}\right) = 54$ Attempts values (but allow numerical trig expressions) for y and their 3 derivatives at $\frac{\pi}{6}$ - accept stated values or insertion into a series of the correct form		M1	
	$(y=)1+3\left(x-\frac{\pi}{6}\right)+\frac{9}{2!}\left(x-\frac{\pi}{6}\right)$ Applies Taylor's correctly about $\frac{\pi}{6}$ with their version separately the work should imply a correct for following the correct general formula	alues/nun ormula bu	nerical trig expressions. If values are not t allow a recognisable attempt at the series	dM1
	$(y=)1+3\left(x-\frac{\pi}{6}\right)+\frac{9}{2}\left(x-\frac{\pi}{6}\right)^2+9\left(x-\frac{\pi}{6}\right)^3+$	Cot	rrect expression with coeffs in simplest	A1
	If e.g. $y'''\left(\frac{\pi}{6}\right)$ is found by calculator but $y'(x)$	x) and y'	*	(7)
	Note: With responses that work in sin and converse of form when differentiating (sign a errors with product/quotient formulae). $y = \tan\left(\frac{3x}{2}\right) = \frac{\sin\left(\frac{3x}{2}\right)}{\cos\left(\frac{3x}{2}\right)} \Longrightarrow$ $y'' = \frac{\frac{9}{2}\cos^3\left(\frac{3x}{2}\right)\sin\left(\frac{3x}{2}\right) + \frac{9}{2}\cos\left(\frac{3x}{2}\right)\sin^3}{\cos^4\left(\frac{3x}{2}\right)}$ $y''' = \frac{\frac{27}{4}\cos^8\left(\frac{3x}{2}\right) + 27\cos^6\left(\frac{3x}{2}\right)\sin^2\left(\frac{3x}{2}\right) + \frac{81}{4}\cos^4\left(\frac{3x}{2}\right)}{\cos^8\left(\frac{3x}{2}\right)}$	and coeff Any use $y' = \frac{\frac{3}{2}c}{\frac{3}{2}c}$ $\frac{3\left(\frac{3x}{2}\right)}{\frac{3}{2}c}$ or	Tricient errors only, also allowing sign of identities must be correct. E.g: $\frac{\cos^{2}\left(\frac{3x}{2}\right) + \frac{3}{2}\sin^{2}\left(\frac{3x}{2}\right)}{\cos^{2}\left(\frac{3x}{2}\right)}$ $\frac{9}{2}\cos\left(\frac{3x}{2}\right)\sin\left(\frac{3x}{2}\right)}{\cos^{4}\left(\frac{3x}{2}\right)} \text{ or } \frac{9\sin\left(\frac{3x}{2}\right)}{2\cos^{3}\left(\frac{3x}{2}\right)}$	

Question Number	Scheme	Notes	Marks
4(b)	$\left\{ y\left(\frac{\pi}{4}\right) = \right\} 1 + 3\left(\frac{\pi}{4} - \frac{\pi}{6}\right) + \frac{9}{2}\left(\frac{\pi}{4} - \frac{\pi}{6}\right) + \frac{1}{2}\left(\frac{\pi}{4} - \frac{\pi}{6}\right) + \frac{1}{2}\left(\frac$	$\left(-\frac{\pi}{6}\right)^2 + 9\left(\frac{\pi}{4} - \frac{\pi}{6}\right)^3$	
	or $1+3\left(\frac{\pi}{12}\right)+\frac{9}{2}\left(\frac{\pi}{12}\right)^2$	$+9\left(\frac{\pi}{12}\right)^3$	
	Substitutes $\frac{\pi}{4}$ into their expression for y of the correct form with at least the first		
	three terms (series about $\frac{\pi}{6}$). Must have values ((not unevaluated trig expressions).	
	If only a decimal value is given then it must be (2.255314325)		
	If there is no working they must obtain an expression with at least $a + b\pi + c\pi^2$ and		
	correct exact ft a , b and c for their series or 1	$+\frac{\pi}{4}+c\pi^2$ with correct exact ft c	
		Correct answer or values for A	

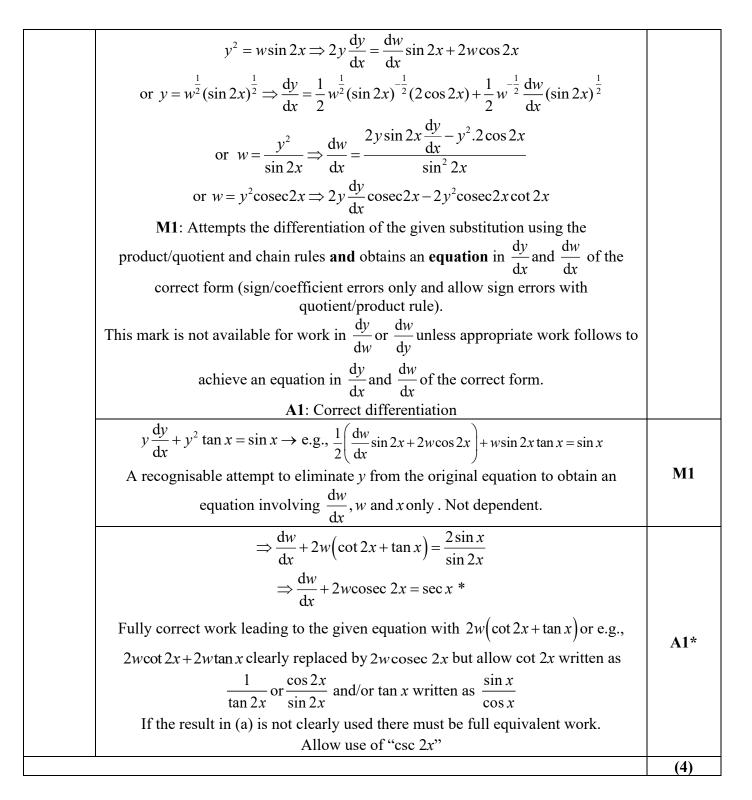
$=1+\frac{\pi}{4}+\frac{\pi^2}{32}+\frac{\pi^3}{192} \text{ or } 1+\frac{1}{4}\pi+\frac{1}{32}\pi^2+\frac{1}{192}\pi^3$	Correct answer or values for A (32) and B (192). Can be awarded if full marks were not scored in (a).	A1
		(2)
		Total 9

Question Number	Scheme	Notes	Marks
5	$r^2 = 100\cos^2\theta + 20\cos\theta\tan\theta + \tan^2\theta$	Any correct expression for r^2	B1
	$\left\{\frac{1}{2}\right\}\int_{0}^{\frac{\pi}{3}}r^{2} d\theta = \left\{\frac{1}{2}\right\}\int_{0}^{\frac{\pi}{3}} \left(100\cos^{2}\theta + 20\sin\theta + \tan^{2}\theta\right)\left\{d\theta\right\}$	Attempts formula for the area with their r^2 which may not be expanded Condone missing $\frac{1}{2}$ and limits not required	M1
	$= \frac{1}{2} \int_{0}^{\frac{\pi}{3}} (50(1+\cos 2\theta)+20\sin \theta + \sin \theta)$ M1 : Uses $\cos^{2}\theta = \pm \frac{1}{2} \pm \frac{1}{2}\cos 2\theta$ or $\tan^{2}\theta = \frac{1}{2}$ M1 : Uses both $\cos^{2}\theta = \pm \frac{1}{2} \pm \frac{1}{2}\cos 2\theta$ and $\tan^{2}\theta$ Both M marks can be scored without the Condone mixed variable A1 : Correct integral following $\cos^{2}\theta = \frac{1}{2} + \frac{1}{2}\cos 2\theta$ $\cos\theta \tan\theta$ must be written as $\sin\theta$ (implied if appendix of the second sec	$= \pm \sec^{2} \theta \pm 1 \text{ in their } r^{2}$ $^{2} \theta = \pm \sec^{2} \theta \pm 1 \text{ in their } r^{2}$ integral and the $\frac{1}{2}$. es. $\theta \text{ and } \tan^{2} \theta = \sec^{2} \theta - 1. \text{ The}$ propriately integrated later). θ are not needed. Allow mixed	M1 M1 A1
	$= \frac{1}{2} \Big[49\theta + 25\sin 2\theta - 20\cos \theta + \tan \theta \Big]_{0}^{\frac{\pi}{3}} \text{ or } \Big[\frac{49}{2}\theta + \frac{25}{2}\sin 2\theta - 10\cos \theta + \frac{1}{2}\tan \theta \Big]_{0}^{\frac{\pi}{3}} \Big]_{0}^{\frac{\pi}{3}}$ $\mathbf{M1}: \text{ Achieves three of the following four integrated forms:}$ $k \rightarrow k\theta \text{ (at least once), } \cos 2\theta \rightarrow\sin 2\theta \text{, } \sin \theta \rightarrow\cos \theta \text{, } \sec^{2}\theta \rightarrow\tan \theta \text{.}$ Ignore other terms if 3 of the above are satisfied. No $\frac{1}{2}$ or limits required. Condone mixed variables. $\mathbf{A1}: \text{ Correct integration including the } \frac{1}{2} \text{ (may be seen later). Limits not required.}$ May be unsimplified e.g., 49θ seen as $50\theta - \theta$. Allow mixed variables if subsequent work recovers this.		
	$=\frac{1}{2}\left(\frac{49\pi}{3}+25\sin\frac{2\pi}{3}-20\cos\frac{\pi}{3}+\tan\frac{\pi}{3}-(0+0-20+0)\right)$ $\begin{cases} =\frac{1}{2}\left(\frac{49\pi}{3}+\frac{25\sqrt{3}}{2}-10+\sqrt{3}+20\right) \text{ or } \frac{49\pi}{6}+\frac{25\sqrt{3}}{4}-5+\frac{\sqrt{3}}{2}+10 \end{cases}$ Applies the correct limits to an expression of the form $p\theta+q\sin 2\theta+r\cos\theta+s\tan\theta$ $(p,q,r,s\neq 0)$ Allow slips but there must be a clear attempt to substitute, and they must only subtract the value of their r , e.g. if $r = -20$ work must have or imply(-20) or +20. Allow mixed variables if the substitution recovers this.		M1
	$= \frac{1}{12} \left(98\pi + 81\sqrt{3} + 60 \right)$ Note that there are other viable routes through the integration	Correct answer or values for a, b & c	A1 (9)
	The mat more are only viable routes through the integration	on e.g., use of integration by parts	(9) Total 9

Question Number	Scheme	Notes	Marks
6	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 6\frac{\mathrm{d}x}{\mathrm{d}t} + 13x = 8\mathrm{e}^{-3t}$	<i>t</i> 0	
(a)	$m^{2} + 6m + 13 = 0 \Longrightarrow m = \frac{-6 \pm \sqrt{36 - 52}}{2}$ $\left\{ = -3 \pm 2i \right\}$	Forms correct auxiliary equation and obtains a correct numerical expression for at least one root by formula or uses CTS (apply usual CTS rule below). One correct root if no working	M1
	CTS rule: $m^2 + 6m + 13 = 0 \Longrightarrow \left(m \pm \frac{6}{2}\right)^2$	$\pm q \pm 13 = 0, \ q \neq 0 \Longrightarrow m = \dots$	
	CF examples: $(x =) e^{-3t} (A \cos 2t + B \sin 2t)$ or $(x =) A e^{-3t} \cos(-2t) + B e^{-3t} \sin(-2t)$ or $(x =) P e^{(-3+2i)t} + Q e^{(-3-2i)t}$ or $(x =) e^{-3t} (P e^{2it} + Q e^{-2it})$	Correct complementary function in any form, allow if the " $x =$ " is missing or wrong and accept for this mark if the CF is given fully in terms of x instead of t.	A1
	$PI: \left\{ x = \right\} \lambda e^{-3t}$	Correct form for the particular integral selected. Must include λe^{-3t} but accept with any extra terms that correctly disappear when coefficients found. Accept "PI=". If λe^{pt} is used $p = -3$ must be seen later.	B1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -3\lambda \mathrm{e}^{-3t} ; \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 9\lambda \mathrm{e}^{-3t}$ $\implies 9\lambda \mathrm{e}^{-3t} + 6\left(-3\lambda \mathrm{e}^{-3t}\right) + 13\lambda \mathrm{e}^{-3t} = 8\mathrm{e}^{-3t}$	Differentiates a PI of any form twice (provided it has at least one constant and is a function of <i>t</i>) and substitutes into the equation. Allow only sign/coefficient errors only in the differentiation. Their PI must lead to non-zero derivatives.	M1
	$\Rightarrow 9\lambda - 18\lambda + 13\lambda = 8 \Rightarrow \lambda = \dots (2)$	Proceeds to find the value of the constant following use of a PI of the correct form . Any unnecessary extra terms in the PI must be found to be zero	dM1
	$x = "e^{-3t} \left(A\cos 2t + B\sin 2t \right) " + 2e^{-3t}$	Correct general solution ft on their CF only – any CF provided it has at least one constant and is in terms of t. Must have $x =$ Do not allow if their CF is miscopied or mathematically changed	A1ft
	Work with a PI of the form $\lambda t e^{-3t}$ is B0M1dM Only condone incorrect variables if they are re- first A1.		(6)

	$\frac{dx}{dt} = e^{-3t} \left(-2A\sin 2t + 2B\cos 2t \right)$ Uses the product rule to differentiate terms of <i>t</i> of the correct form for their C	to find a linear constants. Allow and the constant $t + B \sin 2t$ + $2e^{-3}$ t - $3e^{-3t} (A \cos 2t + 4)$		M1
	$\frac{dx}{dt} = e^{-3t} \left(-2A\sin 2t + 2B\cos 2t \right)$ Uses the product rule to differentiate terms of <i>t</i> of the correct form for their C	t) $-3e^{-3t}(A\cos 2t +$		
	$\frac{dx}{dt} = e^{-3t} \left(-2A \sin 2t + 2B \cos 2t\right) - 3e^{-3t} \left(A \cos 2t + B \sin 2t\right) - 6e^{-3t}$ Uses the product rule to differentiate their real GS obtaining an expression in terms of t of the correct form for their GS (sign and coefficient errors only – so do not allow e.g.,e^{pt} \rightarrow e ^{qt}). Allow for GS = CF or CF + PI and does not have to include constants. If they work with a complex function e.g., $x = Pe^{(-3+2i)t} + Qe^{(-3-2i)t} + 2e^{-3t}$ progress is unlikely. This mark is not scored for work in (c)			M1
	$t = 0, \frac{dx}{dt} = \frac{1}{2} \Rightarrow \frac{1}{2} = 2B - 3A - 6 \Rightarrow B =(=1)$ Uses both initial conditions to find values for the 2 constants (no others) in their GS = (CF with 2 constants) + PI(no constants) . One constant must be found to be non-zero. Requires both previous M marks.		ddM1	
	Examples: $x = e^{-3t} \left(-\frac{3}{2} \cos 2t + \sin 2t \right) + 2t$ or $x = e^{-3t} \left(-\frac{3}{2} \cos 2t + \sin 2t + $	$2e^{-3t}$	Correct particular solution in any form in terms of t. Must be $x = \dots$ <u>unless</u> this was the only reason for final A0 in part (a) due to omission or e.g, " $y = \dots$ " was used	A1
				(4)
(c)	$\frac{dx}{dt} = e^{-3t} \left(3\sin 2t + 2\cos 2t \right) - 3e^{-3t} \left(-\frac{3}{2}\cos 2t + \sin 2t \right) - 6e^{-3t} = 0$ Sets an expression for $\frac{dx}{dt} = 0$. Accept with any unfound constants provided $\frac{dx}{dt} = f(t)$		M1	
	$(3\sin 2t + 2\cos 2t) - 3\left(-\frac{3}{2}\cos 2t + \sin 2t\right) - 6 = 0$ Achieves an equation of the form $a\sin bt + c\cos bt + d = 0$ or equivalent with terms uncollected. One of a and c non-zero and b and d non-zero. Must follow a GS = CF + PI where two constants were found for the CF and one for the PI. Requires previous M mark.		dM1	
	$\cos 2t = \frac{12}{13} \Rightarrow t = 0.1973955598 \Rightarrow x \text{ or } a = \frac{1}{2} e^{-3(0.1973)} \left(4 - 3 \times \frac{12}{13} + 2\sin(2 \times 0.1973) \right) =$ Finds a value of t from $\cos kt = c$ ($k \neq 1, -1 < c < 1$) and uses their positive (or made positive) value of t to find a value of x (or a) via their PS. Accept a pair of stated values. Requires both previous M marks.		ddM1	
	x or a = 0.553(116472)		awrt 0.553	A1
				(4) Total 14

Question Number	Scheme	Notes	Marks
7(a) Way 1	$w = \frac{z-3}{2i-z} \Longrightarrow 2iw - wz = z-3 \Longrightarrow z = \dots$	Attempts to make z the subject and obtains any f(w)	M1
-	$z = \frac{3+2iw}{w+1}$ or $\frac{-3-2iw}{-w-1}$	Any correct expression for z in terms of w	A1
	$= \frac{3+2iu-2v}{u+iv+1} \times \frac{u+1-iv}{u+1-iv}$ Applies $w = u + iv$ and a correct multiplier for their z seen or implied by a correct result from their z. Denominator must have had a "w". Note alternative route below. $x+iy = \frac{3+2iu-2v}{u+iv+1} \times \frac{u+1-iv}{u+1-iv} = \frac{(3-2v)(u+1)+2uv+2u(u+1)i-(3-2v)vi}{(u+1)^2+v^2}$ $y = x+3 \text{ oe } \Rightarrow \frac{2u(u+1)-(3-2v)v}{(u+1)^2+v^2} = \frac{(3-2v)(u+1)+2uv}{(u+1)^2+v^2} + 3$ Multiplies, extracts real and imaginary parts and uses them in the equation $y = x+3$ (oe) to produce an equation in u and v only – no "i"s. Condone $y =i$ if recovered. Can follow slips with multiplier but denominator of z must have had a "w" Note : Just $2u(u+1)-(3-2v)v = (3-2v)(u+1)+2uv+3$ is M0 (lost denominators)		M1
			M1
	$2u(u+1) - (3-2v)v = (3-2v)(u+1) + 2uv + 3(u+1)^2 + 3v^2$ $\Rightarrow u^2 + 7u + v^2 + v + 6 = 0$	Expands and simplifies to obtain an equation of a circle with 4 or 5 real unlike terms. All previous Ms required.	dddM1
	$x + iy = \frac{3 + 2iu - 2v}{u + iv + 1} \Longrightarrow \left(x + i\left(x + 3\right)\right) \left(u + 1 + iv\right)$ $M1: \text{ Applies } z = x + iy, \text{ uses } y = x + 3 \text{ and cro}$ $x(u+1) - v(x+3) + (x+3)(u+1)i + xvi = 3$ $\Rightarrow ux + x - vx - 3v = 3 - 2v, ux + x + 3u + 3$ $\Rightarrow x = \frac{3 + v}{u + 1 - v}, x = \frac{-u - 3}{u + 1 + v}$ $M1: \text{ Equates real and imaginary parts and makes } x$ $(3+v)(u+1+v) = -(u+3)(u+1-v) \Rightarrow 3u+3+3v+uv+v+$ $\Rightarrow u^2 + v^2 + 7u + v + 6 = 0$ $M1: \text{ Equates real and imaginary parts and makes } x$	ss multiplies 3-2v+2ui 3+xv = 2u the subject twice $v^2 = -u^2 - u + uv - 3u - 3 + 3v$	
	M1: Equates expressions for x to obtain a circle equation with $\Rightarrow \left(u + \frac{7}{2}\right)^{2} + \left(v + \frac{1}{2}\right)^{2} = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre:} \left(-\frac{7}{2}, \frac{7}{2}\right)^{2}$ M1: Extracts the centre and/or radius from their circle equation or 5 real unlike terms. Circle equation must not be in terms of correct coordinate (but condone wrong sign) or the correct May use $u^{2} + v^{2} + 2gu + 2fv + c = 0 \Rightarrow \text{centre:} (-g, -f)$ A1: For a correct centre or radius from a correct A1: For correct centre and radius from a correct Centre as coordinates, $x/u =, y/v =$ or as $-\frac{7}{2} - \frac{1}{2}$ Allow exact equivalents for coordinates	$-\frac{1}{2}$ radius: $\frac{\sqrt{26}}{2}$ or $\sqrt{\frac{13}{2}}$ on, however obtained, with 4 f z or w. They must get one t radius for their circle.), radius = $\sqrt{g^2 + f^2 - c}$ t circle equation t circle equation i and allow $\left(-\frac{7}{2}, -\frac{1}{2}i\right)$	M1 A1 A1
	Allow exact equivalents for coordinates	s/raulus	(8)


Question Number	Scheme	Notes	Marks
7(a) Way 2	$w = \frac{z-3}{2i-z} = \frac{x+iy-3}{2i-x-iy} = \frac{x-3+i(x+3)}{2i-x-i(x+3)}$ [Note that it is possible to replace x with y - 3]	M1: Uses $z = x + iy$ and y = x + 3 in the given transformation A1: Correct expression for w in terms of x	M1 A1
	$\frac{x-3+i(x+3)}{-x-i(x+1)} = u + iv \Longrightarrow x-3+i(x+3) = -xu + v(x+1) - iu(x+1) - ivx$	Applies $w = u + iv$ and multiplies	M1
	$x-3 = -ux + vx + v, x+3 = -ux - u - vx$ $x = \frac{3+v}{1+u-v}, x = \frac{-3-u}{1+u+v}$	Equates real and imaginary parts and makes <i>x</i> the subject twice	M1
	$3+3u+3v+v+uv+v^{2} = -3-3u+3v-u-u^{2}+uv$ $\implies u^{2}+v^{2}+7u+v+6=0$	Equates expressions for x to obtain a circle equation with 4 or 5 real unlike terms.	dddM1
	$\Rightarrow \left(u + \frac{7}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre:} \left(-\frac{13}{2}\right)^2$ M1: Applies a correct process to extract the centre at equation, however obtained, with 4 or 5 real unlike ter (but condone wrong sign) or radius correct	nd/or radius from a circle rms. One correct coordinate	M1
	May use $u^2 + v^2 + 2gu + 2fv + c = 0 \Longrightarrow$ centre : $(-g, -)$	f), radius = $\sqrt{g^2 + f^2 - c}$	A1 A1
	A1: For correct centre or radius from a correct circle equation A1: For correct centre and radius from a correct circle equation Centre as coordinates, $x/u=, y/v=$ or as $-\frac{7}{2}-\frac{1}{2}i$ and $allow(-\frac{7}{2},-\frac{1}{2}i)$ (8)		
Way 3	e.g., 3 points on line are (0,3), (1,4) and (2,5) or $z_1 = 3i$, $z_2 = 1 + 4i$, $z_3 = 2 + 5i$	Attempts three points/complex numbers on $y = x + 3$ with 2 correct	M1
	$w = \frac{z-3}{2i-z} \Longrightarrow w_1 = \frac{3i-3}{-i}$ $w_2 = \frac{-2+4i}{-1-2i}$ $w_3 = \frac{-1+5i}{-2-3i}$	Correct transformed complex numbers	A1
	$w = \frac{z-3}{2i-z} \Longrightarrow w_1 = \frac{3i-3}{-i} w_2 = \frac{-2+4i}{-1-2i} w_3 = \frac{-1+5i}{-2-3i}$ $w_1 = \frac{3i-3}{-i} \times \frac{i}{i} w_2 = \frac{-2+4i}{-1-2i} \times \frac{-1+2i}{-1+2i} w_3 = \frac{-2}{-1+2i}$ At least two correct multipliers to remove "i" from denom (-1, 2) used). Requires 2 correct points/completed by the second s	inator seen or implied (one if	M1
	$w_1 = -3 - 3i$ $w_2 = -\frac{6}{5} - \frac{8}{5}i$ $w_3 = -1 - i$ m	Two correct complex numbers in $a + ib$ form or as points	M1
	1 = 0 $1 = 1$ $1 = 1$ $1 = 1$ $1 = 1$ $1 = 1$ $1 = 1$ $1 = 1$ $1 = 1$	Uses a correct general equation of a circle to form aree simultaneous equations. All previous Ms required.	dddM1
	$\Rightarrow g = \frac{7}{2}, f = \frac{1}{2}, c = 6 \Rightarrow \text{centre } (-g, -f): \left(-\frac{7}{2}, -\frac{1}{2}\right) \text{ radius}$ M1: Solves and obtains at least one correct coordinate (radius for their constants) A1: Correct centre or radius from con A1: Correct centre and radius from con	$f = \sqrt{g^2 + f^2 - c} = \frac{\sqrt{26}}{2} \text{ or } \sqrt{\frac{13}{2}}$ (but condone wrong sign) or rrect work	M1 A1 A1

Question Number	Scheme	Notes	Marks
7(b) (i) & (ii)		 M1: Any circle with the whole interior indicated. Ignore any inconsistencies with their stated centre, value for radius (which may have been negative) or circle equation. If shaded, consider the shaded area but if not allow any credible indication such as an "<i>R</i>" inside the circle unless they have clearly indicated a segment. A1: Correct circle drawn in the correct position with whole interior shaded. Entirely in quadrants 2 & 3 and centre if marked in Q3 (if not marked then more than half of the circle in Q3). Condone if it appears that the area above the <i>x</i>-axis is greater than the area below provided the centre is indicated in Q3. Must be shaded but does not require a label. Circumference may be dotted/dashed line. Ignore incorrect labelling of centre/axes/intersections but requires full marks in (a). 	M1 (B1 on ePen) A1 (B1 on ePen)
			(2) Tatal 10
			Total 10

Question Number	Scheme	Notes	Marks
8(a)	Allow "single fraction" to be implied by sum/difference of fractions with same denominator or a product of fractions. No further fractions in numerator/denominator.		

	2 (;)		
	$\cot 2x \left\{ +\tan x \right\} = \frac{\cos 2x}{\sin 2x} \left\{ +\frac{\sin x}{\cos x} \right\}$	Uses $\cot 2x = \frac{\cos 2x}{\sin 2x}$ or e.g., $\frac{\cos 2x}{2\sin x \cos x}$	M1
	$\frac{\cos 2x + 2\sin^2 x}{2\sin x \cos x} \Rightarrow$ $\frac{\cos 2x + 2\sin^2 x}{2\sin x \cos x} \Rightarrow$ $\frac{e.g., \frac{1-2\sin^2 x + 2\sin^2 x}{2\sin x \cos x} \text{ or } \frac{\cos^2 x - \sin^2 x + 2\sin^2 x}{2\sin x \cos x}}{\sin 2x} \text{ or } \frac{\cos 2x + 1 - \cos 2x}{\sin 2x}}{\cos 2x}$ $\Rightarrow \frac{\cos 2x + \frac{\sin x}{\cos x} \times 2\sin x \cos x}{\sin 2x} \Rightarrow e.g., \frac{1-2\sin^2 x + 2\sin^2 x}{\sin 2x}}{\sin 2x}$ $OR \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x} \Rightarrow$ $\frac{\cos x}{\sin 2x} \text{ or } \frac{\cos^2 x - \sin^2 x \cos x + 2\sin^2 x \cos x}{\sin 2x \cos x} \Rightarrow$	Uses sufficient correct identities e.g., $\cos 2x = 1 - 2\sin^2 x$ $\cos 2x = \cos^2 x - \sin^2 x$ $\cos 2x = 2\cos^2 x - 1$ $2\sin^2 x = 1 - \cos 2x$ $\cos 2x \cos x + \sin x \sin 2x = \cos(2x - x)$ to obtain a correct single fraction with numerator in terms of sin x and/or cos x or " $\cos 2x + 1 - \cos 2x$ ". A qualifying fraction must be seen before $\frac{1}{2\sin x \cos x}$ or $\frac{1}{\sin 2x}$	A1 (M1 on ePen)
	$=\frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$	Condone poor notation.Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark.	A1*
			(3)
Alt	$\cot 2x \{ +\tan x \} = \frac{1 - \tan^2 x}{2\tan x} \{ +\tan x \}$	Uses $\cot 2x = \frac{1 - \tan^2 x}{2 \tan x}$	M1
	$\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow$ e.g., $\frac{\tan^2 x + 1}{2 \tan x} \Rightarrow \frac{\left(\frac{\sin x}{\cos x}\right)^2 + 1}{2 \frac{\sin x}{\cos x}} \Rightarrow \frac{\cos x \left(\sin^2 x + \cos^2 x\right)}{2 \cos^2 x \sin x}$ or $\frac{\tan^2 x + 1}{2 \tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ or $\frac{\sec^2 x}{2 \tan x}$ or $\frac{\cos x}{2 \cos^2 x \sin x}$	Uses correct identities e.g., $\tan x = \frac{\sin x}{\cos x}$ oe to obtain a correct single fraction in sin x and cos x but allow $\frac{\sec^2 x}{2 \tan x}$ following use of $\sec^2 x = 1 + \tan^2 x$ A qualifying fraction must be seen before $\frac{1}{2 \sin x \cos x}$ or $\frac{1}{\sin 2x}$ Condone poor notation.	A1 (M1 on ePen)
	$\frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$	Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. sin x^2 for this mark.	A1*

Question Number	Scheme	Notes	Marks
8(b)	Examples:		M1 A1

Question Number	Scheme	Notes	Marks
--------------------	--------	-------	-------

8(c)

$$\frac{dw}{dx} + 2w \operatorname{cosec} 2x = \sec x \Rightarrow \operatorname{IF} = e^{2\int \sec 2x dx} = \tan x$$
or $e^{-b(\cos x^2/x^{(0)})} \Rightarrow \frac{1}{\csc 2x + \cot 2x} \operatorname{or} \frac{1}{\cot x} \operatorname{or} \tan x$

$$\frac{\operatorname{MI} : e^{2\int \cos x^2/x^{(0)}} \cos \theta \operatorname{condoning}}{2^{2}s}$$

$$\operatorname{MI} \quad AI : \tan x \text{ or}$$

$$AI : \tan x \text{ or$$

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom